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Synopsis 

A method to produce homopolymers of preestablished molecular weight distribution (MWD), 
through “living” anionic polymerizations carried out in homogeneous semibatch reactors is 
proposed and theoretically justified. In the direct form of the technique, very fast reactions 
are assumed, and the monomer and “killing” agent feed flows are obtained from the knowledge 
of the desired MWD, the system spreading function, the total reaction time, the initial reaction 
volume, and the reagent concentrations. Alternatively, by controlling a reactor outlet flow 
instead of the “killing” agent feed, an external deactivation of the “living” ends can be 
implemented. The method can be extended to slow reactions, to more elaborated mechanisms, 
and to take into account the unwanted deactivation of “living” ends by impurities in the 
monomer solution feed. 

INTRODUCTION 

The control of MWDs in polymers is important from the point of view of 
the influence of this characteristic on the processability and final properties 
of these materials. 

Nonterminated anionic polymerizations with fast initiation with respect 
to propagation carried out in batch, semibatch, or tubular reactors provide, 
in principle, the best possible system for controlling MWDs. The reasons 
are: (a) the number average chain length can be easily altered through the 
monomer to initiator concentration ratio; (b) the instantaneous MWDs pro- 
duced tend to be very narrow and in the ideal limit, Poisson-distributed. 

The deactivation of the polymer “living” ends during polymerization by 
impurities such as water, oxygen, acids, etc. tends to broaden the MWD 
produced, and has been studied in several For example, if 
an impure monomer solution is added to a “living” polymer, and it is as- 
sumed that the propagation to termination probability ratio remains con- 
stant throughout the reaction, a Schulz-Flory distribution is obtained when 
the last “living” molecule is deactivated.’~~ 

The periodic operation of continuous “living” polymerizations has been 
proposed in several opportunities as a means of producing polymers with 
MWDs different than those produced in the steady state.7 As far as the 
authors are aware, there is only one work* that has attempted the pro- 
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duction of polymers of any prespecified MWD shape, instead of controlling 
only the first moments of the distribution. In that work, and through a 
crude hypothesis of monodisperse instantaneous MWDs, a method is pro- 
posed by which the desired MWD can be obtained in a plug-flow tubular 
reactor when the monomer feed is periodically cycled. 

The present work studies the way of producing polymers of predetermined 
MWDs through nonterminated anionic polymerizations carried out in a 
semibatch reactor. The semibatch operation is performed by adding a mono- 
mer solution in a controlled fashion into an initiator solution, while si- 
multaneously deactivating active centers. This deactivation can take place 
either in the reactor itself by addition of a “killing” agent (direct method) 
or outside it by manipulating an outlet flow (alternative method). The de- 
sired MWD is obtained at the end of the operation. Theoretical limitations 
for the feasible MWDs are given, and the technique is extended to other 
nonideal cases. 

AN IDEAL SYSTEM MODEL 

Consider the case of solution anionic polymerizations with the following 
assumptions: monofunctional initiator, instantaneous initiation, isothermal 
conditions, irreversible reactions, and perfect mixing. The reactor is first 
loaded with No mol of initiator of volume VD. Then, the following reagents 
are added: monomer solution of concentration EM0] at a flow rate fM(t),, 
and “killing” agent solution of concentration [KO] at a flow rate f K ( t ) .  The 
following very simple reaction scheme is adopted: 

k 
N, + M P, N,+1 (n  = 1,2,- . . ) 

k 
N,+ K A P ,  (n  = 1,2,- . .) 

where N,, and P,,, respectively, represent the number of moles of the “living” 
and dead polymer chains, of length n. The corresponding mass balances 
are 

kf 
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P ( t )  = No - N ( t )  (8)  

where V(t)  is the reaction volume, N(t)  = CnN,,(t) and P(t)  = ZnPn(t)  are 
the total instantaneous number of moles of “living” and dead polymer, 
respectively. 

The reagents concentration inside the reactor may be, in general, eval- 
uated through eqs. (3) and (4); but, when both k, and k ,  are very large, these 
values reduce to 

Defining the following “stretched  variable^,"^ 

where v is a dummy variable, eqs. (5147) may be solved in a general fashion 
to give: 

Equation (13) indicates that at any given time, the “living” polymer is 
Poisson-distributed of area N ,  and with an instantaneous number average 
chain length of (6 + 1). 

If one assumes that at the end of the semi-batch operation (when t = t f )  
the last polymer molecule is deactivated, then Pn(t f )  with (n  = 1,2, - - - 1  
represents the final number chain length distribution. For simplicity, we 
shall call this distribution. [P,(n)],. At t = t f ,  eqs. (14) may be written: 
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and 

The definition of 8(t)  indicates that this function is strictly positive and 
satisfies the conditions for the existence of t(8). Therefore, a change of 
variables from t to 8 can be performed in eqs. (16) to give 

Equation (17) indicates that  the final MWD can be considered to be the 
output of a linear filter with a fictitious input x ( 8 )  and a varying impulse 
response g(8,n) given by the Poisson distribution: 

Figure 1 illustrates this function, for several values of 8. Note that according 
to eq. (181, when the given ideal model is verified, then the MWD produced 
will be always broader than the input x(8) .  In a real situation, when any 
of the hypothesis given at the beginning of this section is not verified, the 
spreading function g(8,n) will be broader than that of eq. (181, and, con- 
sequently, the same will happen to [P,(n)Ip Equation (17) provides the clue 
for the theoretical limits that  can be expected in a synthesized MWD: The 
normalized desired MWD cannot have variations which are more abrupt 
than those of the normalized impulse response g(8,n). In the frequency 
domain, this implies that  the cutoff frequency of the transformed desired 
distribution must be always below that of the transformed impulse response. 

molar 
f roc tion @ e n - '  

(n-l)! 
g ( n , 8 ) =  -- 

0 I ;  

Fig. 1. 
n 

Poisson spreading function for several values of 8.  
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THE DIRECT METHOD 

Assume first that eqs. (9) and (10) are valid. Replacing eq. (9) in eqs. (161, 
one obtains 

Equation (19) is impossible to solve for f K ( t )  unless a simple relationship 
between t and 8 can be established. According to eq. (111, such a relationship 
will be linear, i.e., 

t = ce (20) 

if [M(t )]  is kept steady throughout the operation; and this is achieved by 
maintaining the ratio f , ( t ) lN(t)  constant [eq. (911. When this is the case, 
and by making [P,(n)], = P$(n)  where P$(n) represents the desired number 
chain length distribution satisfying 

then, one can write 

Calling 

this function can be evaluated from eq. (22) by an operation normally known 
as inverse filtering or input estimation. This operation is totally equivalent 
to the correction of size exclusion chromatograms for nonuniform instru- 
mental spreading through Tung’s integral f o r m ~ l a . ~ J ~  Note that since each 
g ( n )  has unity area, then the area under x1 will also be NO. Calling 8, the 
highest value of 8 with nonzero value of x 1, then the proportionality between 
t and 8 is given by 

From eqs. (201, (231, and (241, 
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Replacing eq. (10) in eq. (7) and solving, we have 

With total reagents conversions, the desired number average chain length 
pf is obtained from the ratio between the total added number of moles of 
the monomer to those of the initiator. Therefore, 

and 

In summary, the method may be stated as follows: (a) solve for fdt) 
through eqs. (22)-(25); (b) find N(t) through eq. (26); and (c) find fM(t) through 
eq. (28). 

In the first two columns of Figure 2, the direct method is illustrated by 
three examples. The required number chain length distributions are rep- 

Desired MWD Direct method Al ternot ive method 

t mj ............... 

t 

t 

F,:' pJ ............... 

t 

Fig. 2. Three illustrative examples of the proposed method. The numbers by the delta 
functions represent their corresponding intensity. 
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resented in the first column together with the corresponding values of xl(0). 
In the second column, the necessary feed profiles are shown. Note that 
whereas f K ( t )  is proportional to x,(O),  the monomer flow is a decreasing 
function that insures a steady growth of the “living” polymer average chain 
length. 

THE ALTERNATIVE METHOD 

In the previous section, the “living” ends were deactivated through the 
addition of a “killing” agent. Alternatively, one can think of simply deac- 
tivating a reactor outlet in a controlled fashion. This procedure has the 
advantage that the “killing” agent does not need to be prepared nor its 
concentration adjusted, which may be experimentally difficult to perform. 
Furthermore, the prerequisite of a high value for k,’is now relaxed. A 
possible disadvantage is that the semibatch reactor must now work effi- 
ciently throughout the entire reaction volume range. 

Calling F ( t )  the reactor outlet flow rate and V(t)  the reaction volume, 
the system model becomes 

P ( t )  = N o  - N ( t )  (34) 

As before, with k, very large, eq. (9) is valid; O ( t )  is defined as in eq. (111, 
but $(t)  is now 

The solutions for N,(t)  and N ( t )  are again those of eqs. (13) and (151, 
respectively; but eq. (14) becomes 
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If as in the direct method fM(t)lN(t) is maintained constant, then eqs. 
(20) and (28) are valid, and eq. (36) yields for t = +and P$(n): 

Call 

X z ( C @  can be obtained from eq. (37) and then 

with c given by eq. (24). 
From eq. (33), N(t) can be evaluated: 

and therefore f M ( t )  found through eq. (28). 

defining 
Consider finally the obtention of F(t) .  Through Eqs. (30) and (33), and 

1 dN(t) a(t) = -- - 
N(t) d t  

one can arrive at 

where 

1 da(t) P(t)  = a(t)- 
a(t) d t  

The general solution to eqs. (42) is 
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From eq. (42b), 

- dN(t ) /d t  
F(0)No/ V -Jl K r )  d r  = In 

Therefore, 

3257 

(44) 

Replacing eq. (45) into eq. (43) and bearing in mind eq. (28), one can finally 
obtain 

Thus, the alternative method may be implemented as follows: (a) solve 
for F ( t )  N ( t ) / V ( t )  through eqs. (37)-(39); (b) calculate N(t )  by eq. (40); (c) 
find f M ( t )  through eq. (28); and (d) find F ( t )  through eq. (46). 

The first and third columns of Figure 2 illustrate the alternative method. 
Whereas the monomer solution profiles are proportional to those of the 
direct method, the outlet flow shapes increase more rapidly than the cor- 
responding “killing” agents flows in the direct method, due to the dilution 
effect by the monomer feed. 

EXTENSIONS OF THE METHOD 

As described so far, the proposed method was justified for instantaneous 
propagation and termination reactions, and no knowledge of the real values 
of the corresponding kinetic constants was required. With the object of 
studying the magnitude of k, and k, above which such conditions are vir- 
tually justified, consider the example of Figure 3. Figure 3(a) indicates the 
desired number chain length distribution together with other initial data, 
and the 3c1(0) = x z ( 0 )  function that results frcm the inverse filtering pro- 
cedure. The required feed flows are represented in Figure 3@). With these 
inputs, the dynamic model of eqs. (3), (4), and (11)-(14) was numerically 
solved for the four combinations of k, and kp, which are indicated in the 
table of Figure 3(c). The curves of Figures 3(c) and (d), respectively, represent 
the final MWDs produced and the instantaneous monomer concentration 
along the semibatch operation. Note that only when both k, and kp are high, 
the required results are produced. Furthermore, it can be also verified that 
above k, = k, = lo4 L/mol. min, the ideal solution is always obtained, 
irrespective of the k, / k, ratio. When k,, is small, the instantaneous monomer 
concentration is high, and the final pn is smaller than required. If, on the 
other hand, k, is small, a Poisson-distributed “living” polymer still remains 
at the end of the operation. 
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In what follows, some extensions of the proposed method will be consid- 
ered. 

Slow Propagation with Fast Termination 

The case of a small (but known) kp with a high (and unknown) k ,  is 
relatively simple. The clue in this case is again to maintain [M(t)] at a 
constant level [MI, which may be calculated [from eq. (1113 through 

In the direct version of the method and from eq. (31, one may obtain a 
more general expression for the required monomer flow as follows: 

Equation (48) replaces eq. (281, but f K ( t )  and N(t) are calculated as before. 
In the alternative method, eq. (48) reduces to 

and the profiles of f’M(t) depend now on whether the direct or the alter- 
native method is employed. F( t )  may be obtained from eqs. (431, (451, and 
(49): 

Consider again the case of kp = 10 and k,  = lo4 in the example of Figure 
3, where the produced MWD was curve 3 of Figure 3(c) instead of the desired 
distribution shown in Figure 3(a). The desired MWD may still be produced 
in the same period of time tf if the flows are modified as illustrated in Figure 
4. Compared to the profiles of Figure 3(b), note that the values of the 
corrected monomer flow rates are in both method versions higher than with 
fast propagation. Consequently, F ( t )  is also larger. The reason for these 
increases is the 1000-fold increase in [MI that is predicted by eq. (47). Ac- 
cordingly, the monomer conversion (that reached 99.84% when kp = lo4), 
drops now to 8.57% in the direct method and to 12% in the alternative 
method. Clearly, by increasing tf, this effect could also be compensated. 

Slow Termination 

If k ,  is small, it can be shown that the problem still has a theoretical 
solution when z,(@ or x,(O> have no discontinuities. This situation will not 
be analyzed, however, for the following reasons: (a) in practice, it is generally 
easy to find deactivating agents which are sufficiently fast; and (b) even 
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with a low k,, the alternative method can be utilized, which permits the 
use of excess of “killing” agent outside the reactor. 

Deactivation by the Monomer Solution 

A practical experimental problem that is normally encountered when 
dealing with anionic polymerizations refers to the unwanted deactivation 
of “living” ends due to impurities in the monomer solution. When this 
occurs, and calling [ K M ]  the “killing” agent concentration in the monomer 
solution, the expressions for [PJn)],  are modified as follows: 

(a) direct method: 

(b) alternative method: 

Note that, in both cases, the net result is the addition of a term that 
distorts the produced distribution. Furthermore, the number average chain 
length will be lower than required, because the polymer is completely deac- 
tivated before the end of the semibatch operation. 
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Maintaining f M ( t )  as if the problem did not exist, the unwanted effect 
may be totally or partially Gompensated by reducing the original flow f K ( t )  
and F ( t )  to fk( t )  and F( t )  & indicated below. It is easy to show that the 
compensation can be complete only if [KM] is relatively low and if the 
functions XI(@ or x2(B) have nonzero values up to 8,. Otherwise, a distortion 
in the final MWD will be produced. Let us n w  investigate the determination 
of f H ( t )  and F(t )  from the knowledge of f M ( t ) ,  N ( t ) ,  f K ( t ) ,  and F(t) ,  assuming 
fast deactivation by the monomer solution impurities. 

Consider first the direct form of the method. This case is very simple 
because it is enough to substract from fK(  t )  the contribution by the monomer 
solution, i.e., 

The solution for the alternative method is more elaborate, however. In 
order to maintain f M ( t ) ,  N(t) and the rate of deactivation of “living” ends 
[F(t)N(t)lV(t)] unaltered, i t  is necessary to change F ( t )  and V(t) to F(t) 
and V(t> as follows: 

This can be transformed to 

with 

Note that y ( t )  is known and that c2 is a constant. Equation (30) is substituted 
by 

Replacing (55s) in (561, and taking into account eq. (331, one may arrive at 

(57) 
VD 
NO 

f ’ ( t )@~t  (1 - @ z t )  + -N(t)  ec2t V(t )  = - 
c2 

Substituting now (57) into (55a), one finally obtains 
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with 

Clearly, negative values for f )K(t)  or F(t )  cannot be implemented. When 
this occurs, zero values for those flows must be adopted, and the compen- 
sation will not be complete. 

Figure 5(a) illustrates the required corrected flow rates for the example 
in Figure 3 with kp = k, = lo4, when [K,] = 0.0005 mol/L. With this 
concentration, 10% of the "living" ends are deactivated by the spurious 
agents at the end of the operation. As shown in Figure 5@), it is possible 
in the case to exactly compensate the unwanted effect and produce a MWD 
which coincides with that required. For comparison, the MWD obtained if 
the correction was not taken into account is also represented. 

Extension to More Elaborate Reaction Mechanisms 

The function x'(t)  of eqs. (16a) and ( 1 6 ~ )  depends solely on the termination 
mechanism. Therefore, if the reaction kinetics is further elaborated with 
the restriction of limiting the termination stage to that of eq. (2); it is, in 
principle always possible to write an expression in the format of eqs. (161, 
with the spreading function depending only on the initiation and propa- 

-_ -- 
n 

Fig. 5 .  (a) Flows required to compensate for deactivated by the monomer solution when 
[KM] = 0.0005 mol/L; (b) final MWDs with and without the appropriate correction. 
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gation stages. For example, consider a mechanism where the two following 
reactions are added to eqs. (1) and (2): 

k 
I + M A N ,  

I + K - L P ,  
k 

(59) 

(60) 

where I and Po represent the active and inactive initiator, respectively. 
Assuming also Io moles of initiator at the start of the operation, then it can 
be shown that eq. (14) is replaced by 

e-B(rl [(l - k , /  k,  e(.r)] 
S! 

c k , l k ,  
Pn(t) = S, (1 - k , /  kp)n ( n -  l)! s = n  

with 

and 8(t)  and +( t )  defines as in eqs. (11) and (12), respectively. 
The spreading function is now wider than that of eq. (16b) and is rep- 

resented by the fist factors of the integrand, before the large key. It can 
also be proved that in this case the proposed method can be employed 
through: (a) inverse filtering eq. (611, assuming linearity between t and 8; 
and (b) considering the total amount of active centers [ N ( t )  + I(t)] instead 
of just N(t), when calculating the required flow profiles. 

CONCLUSIONS 

Based on a very idealized kinetic mechanism, and within certain limi- 
tations, this work has theoretically proved that the intentional deactivation 
of “living” ends in anionic polymerizations carried out in semibatch reactors 
may be an interesting way of producing homopolymers of any prespecified 
MWD. 

Very broadly, the direct method may be stated as follows: (a) The “killing” 
agent flow profile is proportional to the result of an inverse filtering op- 
eration involving the desired MWD and the system spreading function, and 
(b) along the operation, the monomer solution must be added in order to 
insure a constant monomer concentration and a steady growth of the num- 
ber average chain length of the remaining “living” polymer. In the alter- 
native form of the technique (which may be more attractive from a practical 
standpoint), the determination of the required outlet flow is not as straight- 
forward as before, and with the same basic conditions the monomer solution 
flow profile is identical to that of the direct case. The method was also 
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extended to compensate for slow reactions, deactivation by the monomer 
solution and more complex reaction mechanisms. 

A key point in this work is that of the integral functions of eqs. (16) and 
(36). These expressions indicate that the desired MWD can be obtained by 
processing a function of the termination mechanism only, through a time- 
varying filter that depends on the remaining kinetic stages. The seeming 
generality of this expression with different reaction mechanisms, indicates 
that the method could be experimentally applied as follows: 

(a) Find the true experimental spreading function by performing a semi- 
batch experiment with steady addition of the monomer solution only, and 
measuring the instantaneous MWDs produced. Note that, in case of un- 
wanted deactivation by the monomer solution, the relative areas under the 
number chain length distribution curve corresponding to the “living” and 
the “dead” polymer provides also a measurement of the impurities com- 
position. 

(b) Find xi(@ (i = 1,2) by inverse filtering eq. (17) or eq. (37). 
(c) Apply the method with the necessary corrections, assuming linearity 

between t and 8. Alternatively, if the instantaneous number average chain 
length of the “living” polymer peak could be measured on-line, then the 
required deactivation could be exactly known. 

Finally, consider the extrapolation of the proposed method to improved 
the technique given in Ref. 8. In that work, the required periodic monomer 
flow profile to produce the desired MWD through anionic polymerizations 
in a plug-flow tubular reactor was obtained directly from the desired cu- 
mulative MWD, the basic assumption being instantaneous monodisperse 
polymers. By taking into consideration a relationship similar to eq. (17), 
the procedure could include a previous inverse filtering of the desired MWD 
through the experimental spreading function. 

At present, the experimental validity of the methods is being investigated, 
and this will be the subject of a future communication. 

APPENDIX NOMENCLATURE 

“killing” agent flow rate (L/min) 
monomer solution flow rate (L/min) 
outlet flow rate (L/min) 
system spreading function 
“killing” agent concentration (mol/L) 
spurious “killing” agent concentration in the mcnomer 

propagation rate constant (L/mol. min) 
termination rate constant (L/mol- min) 
monomer concentration (mol/L) 
chain length 
total “living” polymer (moll 
“living” polymer of chain length n (mol) 
number chain length distribution of the “living” 

total dead polymer (moll 

solution (mol/L) 

polymer 
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X 1 J 2  + e 
P n  
superscript 0 
superscript d 
subscript f 
primed flows 

number chain length distribution of the dead polymer 
time (min) 
reaction volume (L) 
defined by eq. (16c) 
appears in eq. (17) and it is easy to see that x ( 0 )  = 

defined by eqs. (23) and (38) 
defined by eq. (12) 
defined by eq. (11) 
number average chain length 
indicates initial or feedstock values 
indicates desired values 
indicates final values 
indicate corrections with regard to the original method 

x~[ tce) ] [de /dt ]  
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